July 9, 2012

SCOPE OF WORK

Jericho Center Multimodal Connection, Segments 3 and 4 (Jericho Center to Pratt Rd), STP EH12(10)

PURPOSE OF CONTRACT

The Town of Jericho will retain the services of a VTrans qualified consultant engineering firm to provide engineering services as needed to prepare contract plans, specifications and a construction cost estimate as detailed below for the project outlined in the project description section.

PROJECT DESCRIPTION

The Town of Jericho proposes to construct a multi-modal path connecting the settlement of Jericho Center with Mount Mansfield High School. These two destinations are approximately one mile apart and are connected by Brown's Trace Road.

In 2011, VHB completed a feasibility study for a multimodal connection between Jericho Center and Mount Mansfield Union High School. The study identified possible constraints, presented advantages and disadvantages for several alternatives. The study breaks the project into four segments: Segment 1, from MMU High School to Ethan Allen Road; Segment 2, from Ethan Allen Road to Pratt Road; Segment 3, from Pratt Road to Plains Road; and Segment 4, from Plains Road to the existing sidewalk in Jericho Center.

This project and proposed scope of work relate to the first phase of the overall project: Segment 3 and Segment 4.

- <u>Segment 3</u> Segment 3 is an approximately 800-foot section extending from Plains Road to Pratt Road. The feasibility study proposed five (5) alternatives for the design of this segment, and two (2) alternatives for the location of this segment. The study identified several constraints to be considered in deciding upon a final option. Among the constraints identified for this section were wetlands, the Fire Department driveway, and the proximity of several homes.
- <u>Segment 4</u> Segment 4 is an approximately 1,000-foot section extending from the end of the existing concrete sidewalk in Jericho Center, to Plains Road. This segment is very constrained on both sides by utility poles, wetlands and residences. The feasibility study recommended extending the concrete sidewalk through this section, along the west side of Brown's Trace to Plains Road. Additional recommendations included adding 2-3 foot paved shoulders where possible and extending the 25-mph speed limit to Plains Road, to accommodate cyclists.

DEVELOPMENT OF THE PROJECT

Project development will be based on the 2011 feasibility study referred to in this document, as well as feedback from the public participation process. Excerpts from the feasibility study are attached to this document. This contract will be developed according to the LTF Project Development Process and as described below.

PHASE A – Participate in the pre-design conference and local concerns meeting. Develop purpose and need statement. Complete project alternatives investigation and participate in the alternatives presentation meeting. Prepare conceptual plans, participate in the public informational meeting and complete the Environmental Document.

PHASE B - Complete required permitting, all permitting re-evaluations, subsurface investigations, utility agreements and clearance, final design plans, contract plans, cost estimate(s), project specifications and special provisions, bid documents and the bid analysis. **PLEASE NOTE THE FOLLOWING:**

- 1. The selected consultant will be responsible for the development of the draft and final right-of-way plans. Consultant will also be responsible to make any necessary adjustments to these right-ofway plans.
- 2. Property owner visits, appraisals, deeds, negotiations and acquisition services, if needed, will be negotiated under an amendment or separate contract.
- 3. Review of Appraisals will be performed by the VTrans Right-of-Way Section.
- 4. VTrans will provide the right-of-way clearance certificate.

PHASE C - Provide miscellaneous design engineering services during construction. The project design engineer will **not** be allowed to perform the construction inspection services unless the final construction estimate is below \$250,000.

The Consultant shall maintain continuous contact with the Municipal Project Manager (MPM). The Consultant shall have an active role in the processes of public participation and coordination. The Consultant may be required to attend additional meetings with the MPM, Town officials and property owners, as circumstances require.

PHASE A – PROJECT DEFINITION

A. Predesign Conference

1. The Consultant shall organize and facilitate a Pre-Design Conference prior to the project survey and conceptual design. Attendance shall consist of the MPM, the Town Manager, Town and Town public works personnel, a representative from the selected consultant and the LTF Project Supervisor. This meeting will allow all interested parties to gain an understanding of the context of the project and allow the refining of location alternatives identified by the consultant prior to survey.

B. Survey Information

- 1. The Conceptual Plans include all surveys completed to date including a survey of existing topography as required for development of the plan, profile and cross sections. Additional survey may be necessary to delineate boring locations for subsurface studies, the right-of-way process and any other necessary delineation such as for wetlands, archaeological or historical sites.
- 2. The Consultant shall be responsible for project coordination with affected property owners. Contact with all property owners will be established before survey commences. The Consultant shall draft a letter for signature by a representative of the Town. This letter will introduce the Consultant's surveyor to the property owner. The Consultant shall also provide the Town with a list of all personnel who will be involved in any field activities.

C. Purpose And Need

1. The Consultant shall prepare a Purpose and Need Statement. The intent of this statement is to define and justify the project. This statement is the basis of all proposed alternatives.

D. Combined Local Concerns and Alternatives Presentation Meeting

- 1. The Consultant shall organize and facilitate a local concerns and an alternatives presentation meeting. The project definition process will be explained in general terms, a summary of the identified problems and/or conditions will be presented and comments/concerns relative to the proposed project will be sought. Any comments and/or concerns arising from this meeting are meant for consideration when proposing a purpose and need statement and corrective course of action. Consultant shall be responsible for the meeting summary.
- 2. Before a preferred course of action can be approved by VTrans, alternatives must be investigated. Possible alternatives must include the "no build" alternative. The Consultant shall prepare an Evaluation Matrix identifying

general concerns, engineering details, resource impacts and permits related to each alternative. A Preferred Alternative shall be selected and recommended by the consultant based on all the information presented thus far. The Preferred Alternative shall be identified with a clear explanation as to why it is "preferred". Endorsement of the consultant's recommendation is to be made by the Town before undertaking design work.

E. Conceptual Design

- 1. The Conceptual Design is based on a three-dimensional survey and will include, but is not limited to, typical sections, cross sections (as appropriate), grade lines and traffic control.
- 2. Once appropriate elements have been included, the plans, supporting documentation and construction cost estimate shall be submitted to the Town and VTrans for review and comment.
- 3. The selected consultant shall calculate the area of disturbance from the footprint of the project and request a jurisdictional review/opinion from the ACT 250 Coordinator.

G. Design Criteria and Considerations

- 1. All design must be in accordance with Vermont Agency of Transportation (VTrans) Standard Specifications for Construction (2011), the Vermont Pedestrian and Bicycle Facility Planning and Design Manual, all applicable VTrans design standards and general special provisions, Consultant Contract Attachment: Contract Provisions October 1998, applicable guidelines of the Americans with Disabilities Act (ADA) as well as any other appropriate standards and specifications.
 - 2. All measurements are to be expressed in English units.
- 3. The Consultant will provide full and half-size prints of project plans as required for submittal. Consultant will also provide VTrans with PDFs of the full submittal.
- 4. The Consultant shall be responsible to obtain any waivers of design criteria that are required.
- 5. Standard drawings and standard design details are available from the VTrans web site. If requested by the Consultant, VTrans may provide pertinent data using digital formats. Files transferred to consultants may not be sold or transferred to others without written approval from VTrans.
 - 6. The Consultant will contact the MPM for any additional information

or details that may be required in order to develop the plans including, but not limited to: water, sewer, other buried utilities and existing right-of-way along the project alignment.

- 7. The Consultant shall give careful consideration during final design to the following:
 - (a) adequate drainage/stormwater treatment
 - (b) relocation of existing utilities
 - (c) Avoiding and minimizing environmental impacts, including but not limited to, agricultural land, recreational land, fish and wildlife habitat, wetlands, historical, archeological and water quality. Mitigation strategies shall be designed to offset impacts, as needed.
 - (d) impact on residential and commercial property to include issues of access to private and public property.
 - (e) landscaping
 - (f) erosion and sediment control plans (designer and contractor checklists) related to NPDES. The erosion and sediment control plans may need to address certain stormwater related issues.
 - (g) aesthetic and visual quality
 - (h) availability of construction funds

H. Environmental Document

- 1. The Consultant shall obtain ALL permits necessary for the project including, but not limited to, the following: Categorical Exclusion (NEPA document), Corps of Engineers Permit, VANR Conditional Use Determination (CUD), Stream Alteration Permit, 401 Water Quality Certificate, Historic & Archaeological clearances and Stormwater related permits.
- 2. The Consultant shall incorporate all conditions and requirements stipulated in the environmental permits.
- 3. Once the Environmental Document is completed and signed by the person preparing it, it and all supporting documentation will need to be submitted to the LTF Project Supervisor. It will then be forwarded to the VTrans Environmental Section for their review and concurrence.

PHASE B - PROJECT DESIGN

A. Complete Required Permitting

The Consultant will be required to obtain **ALL** the necessary permits for the project and to perform all the necessary re-evaluations.

B. Subsurface Investigations

The Town recently installed a water line along a portion of the proposed alignment on north side of School Street and may be able to provide some data on existing subsurface conditions.

C. Utility Considerations

1. The Consultant shall submit project plans to each affected utility company with a request to provide relocation routing to the Consultant within a two month period.

The electric utility within the project area is the Vermont Electric Cooperative, 42 Wescom Road, Johnson, VT (802) 635-2331.

2. The Consultant shall review and coordinate the relocation routes submitted by the various utility companies. If it is determined that the utility companies are eligible for reimbursement or if a utility agreement is necessary, the Consultant shall provide the Town with the necessary information for processing a utility agreement.

B. Right-of-Way Acquisition

- 1. The selected consultant will be responsible for the development of the draft and final right-of-way plans. Consultant will also be responsible to make any necessary adjustments to these right-of-way plans.
- 2. Property owner visits, appraisals, deeds, negotiations and acquisition services, if needed, will be negotiated under a separate contract.
- 3. Review of Appraisals will be performed by the VTrans Right-of-Way Section.
- 4. VTrans will provide the right-of-way clearance certificate.

C. Final Design

- 1. The Consultant will develop 85% Final Plans based on the approved Conceptual Plans or Preliminary Plans.
 - 2. The Consultant will submit plans showing temporary erosion and

sediment control measures to be taken during construction. The plans will be developed using the conceptual/preliminary plans as a base, and will illustrate the placement of silt fence and other temporary erosion control features. The plans will contain any special notes or guidance required in the use of these features during construction. An itemized list of temporary erosion control pay items will appear on the project quantity sheet.

- 3. All conditions required for permits or changes necessitated as a result of the right-of-way process or required by ACT 250 (if needed) will be included in the Final Plans submittal. The Consultant will be responsible for providing a representative at all ACT 250 hearings to provide testimony that may be required. **Please note that ACT 250 may not be required.**
- 4. The Consultant shall complete the Specifications and Special Provisions package. Any deviation from VTrans Standard Specifications for Construction shall require the development of a special provision which clearly defines the work to be performed and the method of payment for same.
- 5. The Consultant shall complete an itemized construction cost estimate in Estimator format.
- 6. Deliver five (5) sets of specifications and full size 100% Contract plans to the Town for bidding purposes. The Consultant shall also deliver one set of half-sized plans (11" x 17") to the Town, the MPM, and LTF along with PDFs of the full submittal.

D. Contract Plans

- 1. The Consultant shall submit contract plans that consist of the revised Final Design Plans, all Special Provisions (project specific provisions or requirements) developed through Final Design and two copies of a final engineering estimate. The Consultant will assemble the bid documents.
- 2. The Consultant, in coordination with the MPM, shall answer questions and provide further clarification of their design and estimates during the processing of the project for advertising and the letting of the bid. In the event the Town decides to hold a pre-bid meeting, the Consultant will be required to attend that meeting. Changes to the plans, estimate or any Special Provisions during this stage, if required, will be performed by the Consultant. During this phase of the process, any design considerations identified as not being fully subject to VTrans Standard Specifications for Construction shall require the development of a special provision which clearly defines the work to be performed and the method of payment for same.
- 3. Subsequent to the project's bid opening, the MPM will provide the Consultant with a listing of the unit price bids for the project. The Consultant

shall examine the unit bid prices of the apparent low bid for reasonable conformance with the final engineering estimate. This examination should assure that any large variations would not result in an advantage to the contractor with a corresponding disadvantage to the Town and/or VTrans. The analysis, which should be in narrative format and contain a recommendation regarding the contract award, must be received by the Town/MPM within three working days of the Consultant's receipt of unit bid prices.

4. Upon notification by the MPM that the construction contract has been awarded, the Consultant shall transmit all project correspondence, calculations and survey notes to the MPM. The Consultant shall retain copies of these materials for their use during the next step, Design Engineering Services during Construction.

PHASE C - CONSTRUCTION

A. Consultant Availability

- 1. The Consultant shall attend and participate in the preconstruction conference.
- 2. The Consultant shall answer any questions that may arise relative to the design of the project during construction, shall provide appropriate clarifications and shall participate in decisions relative to field changes. It is anticipated that most questions will be answered via telephone or in writing. However, the Consultant shall be required to visit the site, when requested by the Town or MPM, to investigate and address design issues. For proposal development, the Consultant shall assume three site visits. The field contact person will be the Resident Engineer.

B. Construction Services

- 1. The design Consultant shall be responsible for making any necessary design changes as required by unanticipated field conditions. Additional work resulting from unanticipated field conditions will be reimbursed on the basis of hourly labor rates provided in the cost proposal. However, the Consultant, at no cost to the Town or VTrans, will perform any design changes that result from errors or omissions in the original design plans.
- 2. The design Consultant shall be responsible for the review and approval of shop drawings for items requiring submission for the project. The Consultant shall check all shop drawings in accordance with VTrans Manuals.
- 3. The design Consultant will <u>not</u> be allowed to provide construction inspection services for this project unless the construction estimate is below \$250,000. The design Consultant will be required to participate in the Final

Inspection of the project.

- 4. The design Consultant shall be responsible for any field engineering required due to flaws, inconsistencies or oversights of the contract plans, specifications or special provisions.
- 5. The Consultant's obligation for work on this project shall terminate upon signing of the final requisition by the contractor.

Feasibility Study

Mount Mansfield Union High School to Jericho Center Multimodal Connection

In the Town of Jericho, Vermont

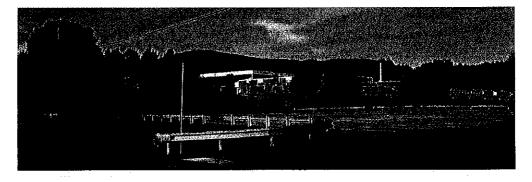
Prepared for:

The Town of Jericho

Prepared by

Table of Contents

.0	Introduction												
	1.1 Background	1-1											
	1.2 Local Concerns Meeting	1-3											
	1.3 Project Purpose and Need	1-3											
2.0	Documentation of Physical and Environmental Conditions												
	2.1 Introduction												
	2.2 Data Collection	2-1											
	2.3 Corridor Description	2-3											
3.0	Identification of Multimodal Solutions												
	3.1 Introduction	3-1											
	3.2 Improvement Alternatives	3-2											
	3.3 Shared Use Path Alternatives	3-5											
4.0	Assessment of Probable Costs	4-1											
5.0	Summary	5-1											
Appe	ndices												
A - V7	Trans Cultural Resources Review Memorandum												
B – Lo	cal Concerns Meeting & Public Informational Meeting												
C – To	wn Endorsement Letter												

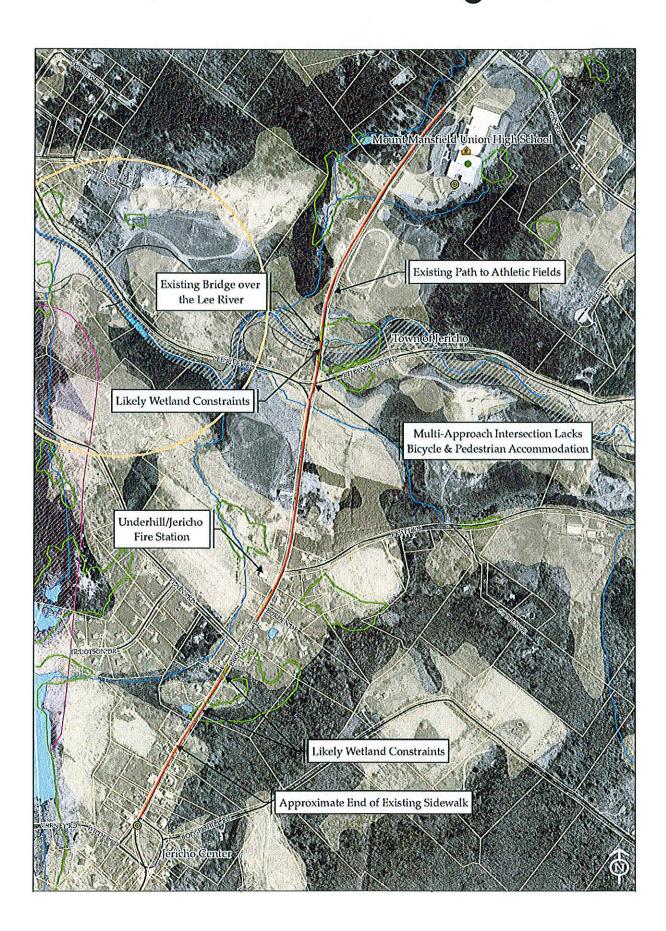

Author: Gregory L. Bakos, P.E., LCI gbakos@vhb.com

1

Introduction

The Town of Jericho identified the need for enhanced bike and pedestrian accommodations between Jericho Center and the Mount Mansfield Union High School (MMU). These two important destinations are approximately one mile apart and are connected by Browns Trace Road. The purpose of this study is to identify and evaluate potential infrastructure improvements that would improve and encourage non-motorized transportation along this corridor.

1.1 Background



In 2008 the Vermont Agency of Transportation (VTrans) conducted a Road Safety Audit Review for the segment of Browns Trace Road (also known locally as simply "Browns Trace") between Bolger Hill Road and Lee River Road. Those study limits were essentially the same as for this multimodal study.

VTrans assembled a road safety audit team that included representatives from the Town and the Chittenden County Metropolitan Planning Organization (CCMPO). The road safety audit team was focused on vehicular safety and their summary report did not include reference to bike or pedestrian concerns within the study corridor. Implementation of their recommended improvements would likely improve certain conditions, such as signing, sight lines, pavement edge drop-offs, and operations at intersections, which would in turn also improve conditions for bicyclists riding on Browns Trace Road.

This multimodal study is a natural follow-on to the road safety audit since it addresses the safety and mobility needs of non-motorized users within the Browns Trace Road corridor. It is funded through a CCMPO Transportation Action Grant

and it is intended to identify and evaluate potential bike and pedestrian infrastructure improvements. The map on the next page shows the study corridor.

1.2 Local Concerns Meeting

A Local Concerns Meeting was held at the Mount Mansfield Union High School in December of 2009 to gather input from local and regional officials, school staff, students, and concerned citizens. The intent of the meeting was to guide the study team in understanding the concerns and desires of the community for bike and pedestrian accommodations. It was also a useful step in the data gathering phase and many of the public comments were insightful. The overwhelming response from the attendees was that non-motorized enhancements are needed between the Town center and the MMU School. One relevant observation was that the automobile dependent behavior of the students has been well accommodated, whereas there is only one bike rack and it is located behind the school.

1.3 Project purpose and Need

Purpose:

The purpose of this project is to improve bike and pedestrian safety and access along Browns Trace Road between Jericho Center and the Mount Mansfield Union High School. The ultimate goals are to improve bike and pedestrian safety which will reduce dependence on motorized vehicles throughout the study corridor, increase opportunities for physical exercise and recreation, and improve the overall quality of life in the community. The infrastructure improvements will imitate an overall colure change that will be supported by bike safety and healthy lifestyle education programs at the school.

Need:

The MMU High School is relatively isolated. It is separated from Jericho Center by approximately one mile, and is not situated near dense residential neighborhoods. In addition, there are no conveniently located bike racks at the school or in Jericho Center to support the students that do choose to ride. As a result, the vast majority of students reach the school by bus or car.

Browns Trace Road is the primary connection between the school and the Jericho Center. It is a narrow rural road, and with the exception of the short section of sidewalk within the Town Center it is devoid of sidewalks and paved shoulders. As a result, Browns Trace Road is not considered a safe or convenient connection to and from the school for pedestrians and most bicyclists. Some experienced cyclists currently use Browns Trace Road, and the track teams are known to run along the road or on the grass or gravel shoulders, but children, inexperienced cyclists and most pedestrians avoid using the road, especially in winter months.

2

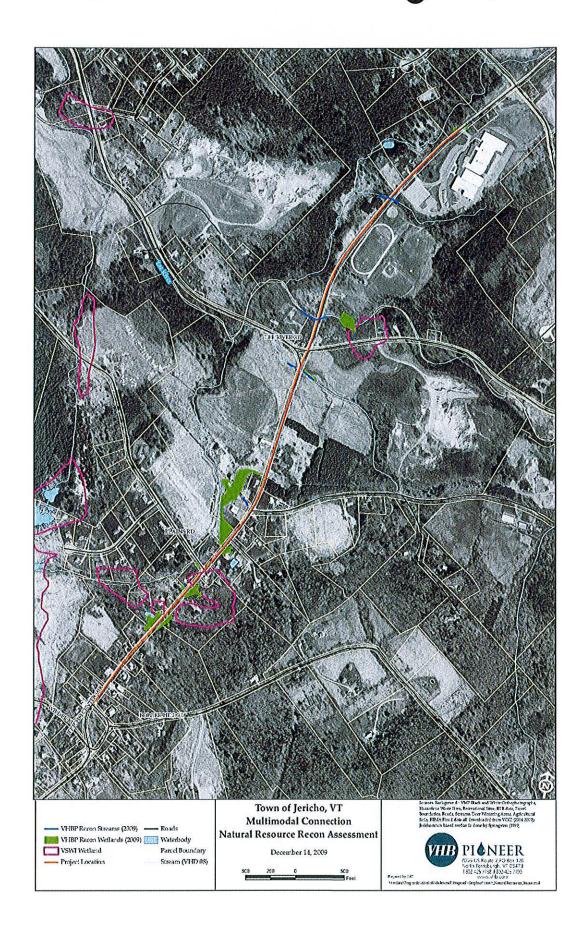
Documentation of Physical and Environmental Conditions

2.1 Introduction

Prior to developing solution alternatives it was first necessary to document the existing physical and environmental conditions. This involved data gathering, review of relevant correspondence and field-based observations and measurements. The following section describes the data gathering results.

2.2 Data Collection

The study team's initial data gathering primarily consisted of Graphic Information Systems (GIS) data gathering. This was then supplemented by field observations.


GIS Base Mapping

The GIS mapping utilizing available geospatial information was assembled and organized as an ArcGIS geodatabase and was overlaid on available orthophotography.

Field Review

Once the electronic base files were assembled the study team performed a field review of the corridor to assess natural resources. One important result of this effort was that the GIS-based natural resources information was reviewed and modified based on real conditions on the ground. This was accomplished by using a Global Positioning System (GPS)-based field computer that showed the GIS mapping as well as the environmental scientist's position on the mapping. The environmental field review was important because GIS data is by no means a complete representation of the actual conditions. For example, the National Wetlands Inventory (NWI) does not depict all of the wetlands present in a given area since NWI maps are based on interpretation of aerial photographs and often miss smaller wetland resources.

The map on the following page shows the results of the natural resource inventory.

For the purposes of this feasibility analysis, the fieldwork was performed at a reconnaissance level only. VHB did not attempt to formally delineate wetland boundaries, but instead adjusted the GIS based wetland boundaries based on visual field observations by an environmental scientist.

In addition to collecting data on natural resources, the study team conducted evaluations of the various constraints and opportunities along the corridor. Physical constraints that were observed included roadside embankments, residential and agricultural buildings, drainage culverts and swales, utility poles, mature trees and the narrow bridge over the Lee River. In addition, the geometry and operations of the Browns Trace Road/Lee River Road/Ethan Allen Road intersection were observed.

Cultural Resources

The VTrans Archaeologist and Historic Preservation Officer reviewed the corridor for potential historic and archaeological resources and provided their initial assessment in written form. They found that the land within the roadway right-of-way has been disturbed and would therefore not be considered sensitive. Outside of the right-of-way there were several areas of potential archeological sensitivity, such as the fields on either side of Browns Trace Road near the Lee River Road intersection, and fields in the vicinity of Plains Road. A foundation was found in the southeast quadrant adjacent to the bridge over the Lee River, north of Ethan Allen Road. That foundation was thought to be the remains of a blacksmith shop. Three buildings (two homes and a barn) were found to be historic. All of the sensitive areas should be avoided if possible, and if unavoidable will require additional archeological study. A copy of the VTrans cultural resources memo may be found in the appendix.

2.3 Corridor Description

Roadway Classification

Browns Trace Road is a two-lane rural road that generally extends south to north from Jericho Center. Within the study area the adjacent land use transitions quickly from Town Center to thinly populated residential, to open agricultural land. Though it is a local road, Browns Trace Road is classified as a major rural collector between Jericho Center and Lee River road. North of Lee River road it is classified as a minor rural collector.

Origins and Destinations

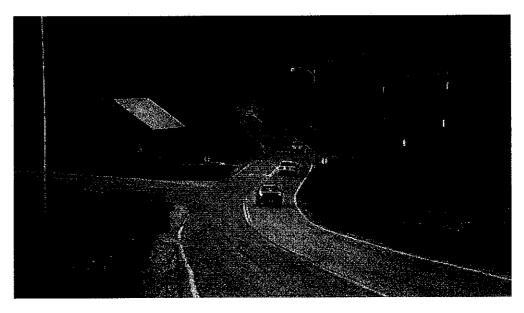
In recent years the Town extended sidewalks on Browns Trace a short distance northward of Jericho Center and these sidewalks connect a number of the local walking destinations, such as the Country Store, the Library, the Community Center and the Congregational Church. In speaking with local residents it appears that the existing sidewalks have been very well received.

The new concrete sidewalk on the west side of Browns Trace Road ends abruptly just north of the residence shown in the photo below.

Pedestrian demand extends much further north of this point since there are nearby residential existing and future developments off of Plains Road and Pratt Road. These destinations would certainly benefit from new bike and pedestrian connections to the Town Center. Beyond Plains Road and Pratt Road, the MMU High School is the prominent bike and pedestrian destination, notwithstanding the fact that it is currently reached almost exclusively by car and bus.

Constraints

Beginning at the MMU High School there are a handful of locations where there are physical or environmental constraints that will make construction of a shared use path more challenging.


The first constraint is the existing Browns Trace roadway bridge over the Lee River, as shown in the photo. The existing bridge does not have sidewalks and the road does not have shoulders. Furthermore, the bridge's railings are too low to be considered safe for bicyclists or pedestrians. Bicyclists and pedestrians are therefore forced to share the road with motorists if they want to go south of the Lee River towards the Town Center.

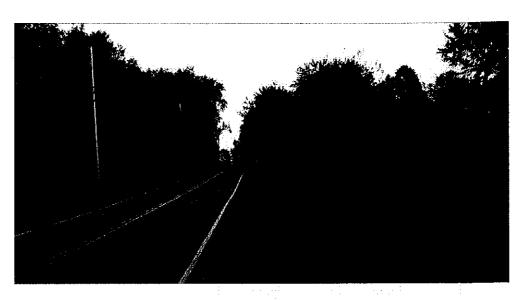
The southeast quadrant bridge approach visible in this photo was the location where the VTrans archeologist suspects there was a blacksmith shop, so a pedestrian bridge crossing in this area would need to skirt that site once the site boundaries are better documented.

The next constraint is the Browns Trace Road/Lee River Road/Ethan Allen Road intersection, as shown below. Three legs of this intersection are under stop sign control, but the northbound approach is uncontrolled and the eastbound approach has a free right slip ramp configuration. This intersection was reviewed during the VTrans 2008 Road Safety Audit Review. The conclusion was that the configuration is a little odd because the heaviest through movement is stop controlled. The study noted that a long term solution might be to reconfigure the intersection to be a more standard 90 degree intersection.

The implications for a shared use path are that the path would need to be integrated safely through the existing intersection, as well as any future reconfigured intersection. University of Vermont engineering students are currently examining a range of improvement alternatives for this intersection and they are aware of the potential for a shared use path through the intersection.

South of the intersection the path would follow one side of Browns Trace Road or the other up the long and steep hill to the barn and farm house near the top of the hill.

The barn and opposite farm house represent one of the more significant constraints on the project. The road at that location is only 25 feet wide and both structures are historically significant. The mature trees are also considered contributing to the historic setting and should not be impacted.



Fitting a shared use path through this constriction will be challenging. It may be necessary to actually shift the road and construct low fieldstone masonry retaining walls to manage the grading through this section. The path width may also need to be reduced to 8 feet or even less due to the extreme circumstances.

South of the farm buildings is another constriction. This next location is a historic home with a mature tree that appears to be overhanging into the right-of-way, as shown in the below photo. If a shared use path is located on the west side of the road, the roadway may need to be realigned in order to allow the tree to remain. That would require relocation of the utility poles on the opposite side of the road.

The next areas of concern that are south of the above property are wetland areas that come close to the roadway. The south-facing photo below shows a wetland on the west side of Browns Trace Road and utility poles on the east side. Note the beginning of the concrete sidewalk on the west side in the distance. The attached wetland mapping shows the approximate locations where wetlands must be dealt with if a shared use path is proposed.

Selecting the location to end a shared use path is also important. The south-facing photo below shows additional constraints closer to the Town Center. These include the stone walls, fences and mature trees that line the eastern right-of-way boundary.

The chapter that follows discusses possible design approaches that would address the constraints described in this chapter.

3

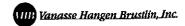
Identification of Multimodal Solutions

3.1 Introduction

The observations from the data collection phase, combined with public input, help shape the types of design solutions that will be possible or necessary to satisfy the project Purpose and Need Statement. This chapter identifies conceptual design solutions that could be employed to address the project challenges.

3.2 Improvement Alternatives

Levels of Improvement


There are several levels of improvement that may be considered along this corridor. Five basic improvement alternatives are listed and described below from the lowest level of improvement to the highest. It may be appropriate to apply different solution alternatives along specific segments of the corridor.

Alternative 1. Add Gravel Shoulders to Browns Trace Road

This alternative would provide the minimum level of improvement.

The paved width of Browns Trace Road currently averages between 24 and 26 feet. Paved or unpaved shoulders are minimal or non-existent throughout most of the study corridor so pedestrians generally have difficulty walking along the side of the road because of uneven surfaces. Bicyclists and pedestrians are therefore both forced to occupy the edge of the paved travelway.

The Annual Average Daily Traffic (AADT) on Browns Trace Road is approximately 4,000 vehicles per day according to 2007 VTrans automatic traffic count data. The Vermont State Standards recommend 11 foot lanes and 3 foot shoulders for two-lane rural collectors with an AADT over 2,000, for all design speeds. This equates to an overall road width of 28 feet. Under Alternatives 1 and 2 the road would be widened

by 1 to 2 feet to achieve the required overall road width. Under Alternative 1 the widening would be accomplished by adding a smooth level 1 to 2 foot wide gravel shoulder on both sides.

Advantages:

- Lowest cost
- Minimal Impacts to resource areas an abutting properties

Disadvantages:

- · Minimal benefit, especially for bicyclists
- Not durable
- · Cannot widen the bridge over the Lee River to achieve the desired width

Discussion:

This could be a reasonable low cost short term improvement, and it would have the minor added benefit of also improving motor vehicle safety. But this alternative falls well short of satisfying the project Purpose and Need. We do not believe it would improve bike or pedestrian safety sufficiently, and we further doubt that the improvements would entice people to walk or bike along the corridor.

Alternative 2. Add Paved Shoulders to Browns Trace Road

This alternative would be similar to Alternative 1 except it would provide added benefit to bicyclists. The road would be upgraded to a uniform width with 11 foot lanes with 3 foot shoulders. The intent would be to provide added paved road width for cyclists to "share the road" with motor vehicles.

Advantages:

- Low cost
- Minimal Impacts to resource areas and abutting properties

Disadvantages:

- Minimal benefit
- Wider pavement could result in higher motor vehicle speeds
- Cannot widen the bridge over the Lee River to achieve the desired width

Discussion:

This alternative may provide the most benefit for the lowest cost for experienced cyclists who would share the road with motor vehicles, however it falls far short of providing added safety for pedestrians and inexperienced cyclists, including children. It would have the added benefit of improving motor vehicle safety, however the wider pavement may lead to higher motor vehicle speeds, which is counterproductive with respect to bicyclist and pedestrian safety.

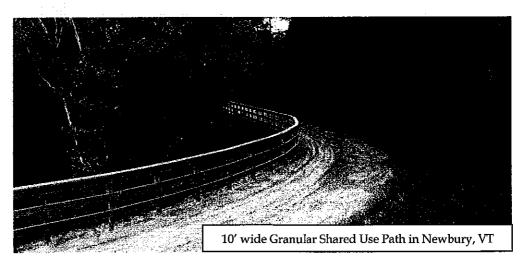
Alternative 3. Add Paved Shoulders plus a Sidewalk on One Side to Browns Trace Road

This alternative would provide paved shoulders to improve bike safety, as in the above alternative, and it would also construct a paved sidewalk along one side of the road to accommodate pedestrians.

Advantages:

- Separates pedestrians from all other users
- Provides paved shoulders for experienced cyclists

Disadvantages:


- Does not account for inexperienced cyclists that may not be comfortable riding in the road
- Would need a pedestrian bridge over the Lee River
- The combined new shoulders and sidewalk would be of similar width as the shared use paths in the next alternatives

Discussion:

This alternative may result in the same amount of impact as the shared use path alternatives, yet the benefits would not be as great. Furthermore, the wider road width that the paved shoulders would provide could result in higher motor vehicle speeds. This concern was voiced by the public and goes against their desire to actually calm traffic.

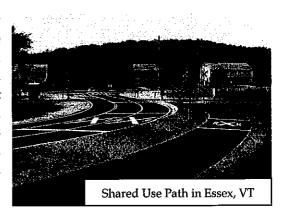
Alternative 4. Construct a Granular Shared Use Path

This alternative involves constructing an un-paved shared use path between the Town Center and the MMU High School. The width would be 8 feet in constrained areas and 10 feet elsewhere. The minimum vegetated buffer between the path and Browns Trace Road would be 3 feet. Additional buffer would be included where possible.

Advantages:

- Separates non-motorized users from motorized users
- Lower initial cost relative to paved path
- Aesthetically more pleasing than a paved path in the rural setting
- May be the preferred surface for runners, walkers and equestrians

Disadvantages:


- Greater impacts to resources and right-of-way compared to Alternatives 1 and 2
- Granular surface does not accommodate all non-motorized users as well as a paved path
- Granular surface requires annual maintenance

Discussion:

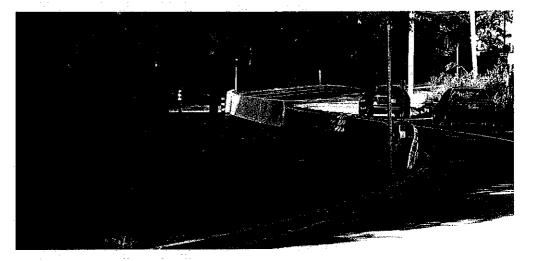
This alternative provides considerably more benefit than the previous alternatives in terms of bicyclist and pedestrian safety since it separates the non-motorized from the motorized users. Granular trail surfaces are a concern on steep slopes, which there will be on this path, because the surface is prone to erosion and because loose spots can be hazardous for cyclists going downhill at high speeds. This alternative would be ideal for walking and running, and would accommodate equestrians. Experienced road cyclists would possibly still use Browns Trace Road.

5. Construct a Paved Shared Use Path

This alternative involves constructing a paved shared use path between the Town Center and the MMU High School. The width would be 8 feet in constrained areas and 10 feet elsewhere. The minimum vegetated buffer between the path and Browns Trace Road would be 3 feet. Additional buffer would be included where possible.

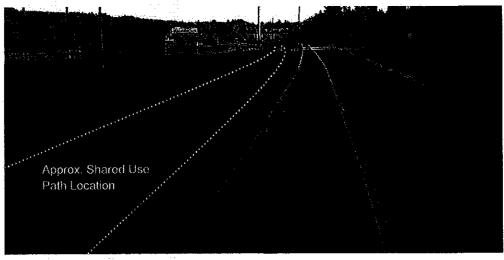
Advantages:

- Separates non-motorized users from motorized users
- Accommodates all non-motorized users, including baby carriages, skate boarders and roller bladers
- More durable than gravel path, especially on steep slopes

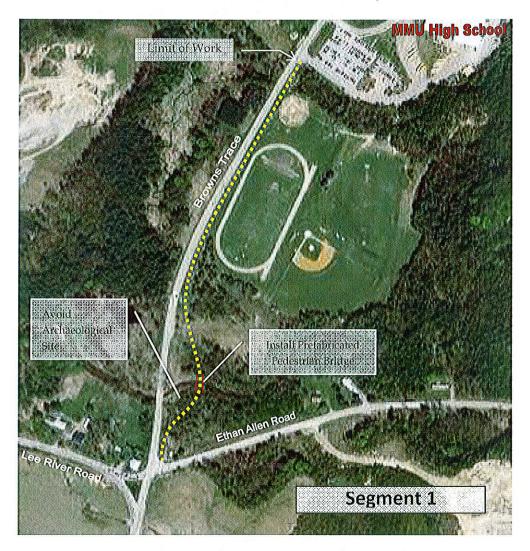

Disadvantages:

 Greater impacts to resources and right-of-way compared to Alternatives 1 and 2 Highest initial cost alternative

Discussion:


This alternative represents the highest level of improvement. It provides the greatest benefit for the largest set of potential users.

3.3 Shared Use Path Alternatives



It is evident from the discussions in the previous section that the shared use path alternatives provide the highest level of improvement and satisfy the project Purpose and Need to the greatest extent. It is also clear from the discussion of constraints in Section 2.3 that it will be difficult to construct a shared use path from the school all the way to the Town Center. A segment by segment evaluation of shared use path solution alternatives follows, beginning at the MMU High School.

Segment 1 - MMU High School to Ethan Allen Road


The path would originate at the school parking lot and proceed southward behind the existing guardrail as illustrated in the above photo. Within the school parking lot signs and pavement markings would be used to help define a preferred path and to alert motorists. Bike racks should be added at the school and/or at the trailhead.

The path would follow the short existing path that leads from the recreations fields to Browns Trace Road. It would then diverge away from the road to cross the river on a new prefabricated bike/pedestrian bridge. The new bridge would have a span longer than the roadway bridge to minimize impacts to the stream bank. The path alignment would be adjusted to avoid the reported remnants of a blacksmith shop building foundation that the VTrans archaeologist reported near the southeast corner of the existing roadway bridge.

Assuming the intersection configuration does not change, the path would cross Ethan Allen Road via a crosswalk at the stop sign controlled approach.

Segment 2 - Ethan Allen Road to Pratt Road

There are three alignment options presented for this segment. They are discussed as follows.

Option A Alignment

Option A is the most direct alignment up the hill to Pratt Road. This option would roughly parallel the east side of Browns Trace Road, separated from the road by a vegetated buffer of at least three feet, and more where possible. It would therefore be constructed partially within and partially outside the reported three rod right-of-way.

Construction of the path would require some cuts and fills since the adjacent terrain is rolling. The path would cross the drainage swale near Ethan Allen Road by

extending the culvert, and the path would need to avoid utility poles near the intersection.

The most difficult aspect of Option A is passing the historic home near the top of the hill. The trees in front of that home have been identified by the VTrans Historic Preservation Officer as contributing to the historic nature of the property, and in his opinion they need to be preserved.

An engineered solution at this location is to narrow the paved path to 8 feet wide along the constrained section, cutting into the very toe of the earth embankment and supporting it with a low (2+/- foot high) fieldstone masonry wall, and shifting the road alignment approximately 6 feet to the west to accommodate the path. The road shift would be accomplished over an approximately 400 foot length. The path would end up adjacent to the roadway, and this condition would need to be signed for both path users and motorists.

Option B Alignment

The Option B alignment is similar to Option A except the path will follow the west side of Browns Trace Road instead. To do this it must first cross Browns Trace Road and the slip ramp from Lee River Road onto Browns Trace Road. There are obvious safety concerns with crossing the slip ramp since it is a free right movement. The VTrans road safety audit suggested reconfiguring the intersection to a more conventional 90 degree intersection where Lee River Road would be stop sign controlled. That change would improve the multimodal path crossing. If the intersection is not reconfigured it may be necessary to install pedestrian actuated crossing lights or warning flashers on the slip ramp. Another option would be to install a speed table on the slip ramp at the path crossing. This would slow vehicles down at all times.

The Option B path becomes constrained at the top of the hill by the historic barn opposite the historic house. The barn is approximately 20 feet from the road, but it may still be necessary to shift the road slightly to the east to fit the path on the west side.

Prior to reaching the Pratt Road intersection the path must pass by another historic property that has a mature tree that hangs into the right-of-way, as described in Chapter 2. To avoid the tree it would be necessary to shift the roadway alignment slightly to the east. The path would once again need to be narrowed to 8 feet and it would be separated from the road with a solid white line.

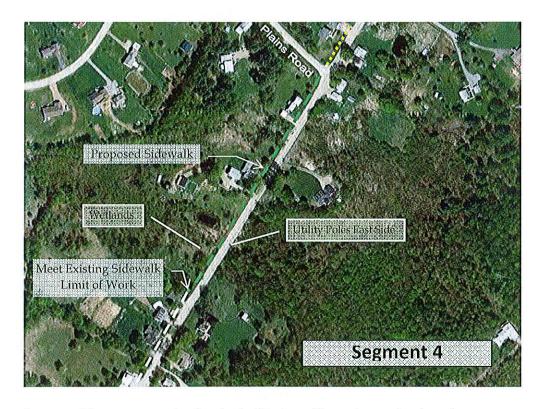
The road crossing at Lee River Road and the two constrained areas at the top of the hill make this option less desirable than Option A. Furthermore, Option A has a direct connection to Pratt Road, whereas Option B is across Browns Trace Road from Pratt Road.

Option C Alignment

The Option C alignment entirely avoids the historic properties by taking a cross country route behind the properties. The property is owned by the Underhill / Jericho Fire Department. The option would be dependent on obtaining their permission to cross the property. The property is currently in agricultural use, however the Fire Department is concerned over the negative impacts that the path could have on their ability to sell or develop the property. The path alignment that is depicted in the above Segment 2 figure follows the outskirts of the pastures, but it could be routed differently to appease the Fire Department.

Option C is considerably longer than Options A and B, but as a result it is also generally less steep. If allowed by the Fire Department this option would likely be preferred since it would avoid the severely constrained areas by the historic properties, and the path would be safely way from the road.

Segment 3 - Pratt Road to Plains Road



There are two shared use path options for this segment. The selection will be driven by which side of the road the path is on under Segment 2.

Option A passes in front of two residences, one of which is very close to the road. Option B crosses the wide Fire Department driveway and passes by one residence. Option B is somewhat constrained by wetlands that extend close to the road. To minimize impacts the path may need to be supported by a low retaining wall, and the width would be reduced to 8 feet in that area.

Option A is shown crossing Browns Trace Road just prior to Plains Road. The sight lines are good at that location and the crossing would be out of the Plains Road intersection area. The goal is to move the path to the west side by Plains Road since the east side becomes very difficult south of Plains Road.

Segment 4 is very constrained on both sides by utility poles, wetlands and residences. The recommended solution in this segment is to extend the existing concrete sidewalk along the west side to Plains Road. This will provide a pedestrian connection to the residents of Plains Road as well as to the shared use path that reaches all the way to the MMU High School.

Another recommendation for this segment is to add 2 to 3 foot paved shoulders to Plains Road, where possible. This would provide better accommodations for cyclists

Mount Mansfield Union High School/Jericho Center Multimodal Connection

than currently exist. It is also recommended that the 25 MPH speed limit in the Town Center be extended to Plains Road to account for the fact that cyclists will be sharing the road with motorists until the start of the shared use path at Plains Road.

It is recommended that the new sidewalk include curbing for enhanced pedestrian safety and to signal motorists that they are now in a village setting and should slow down. The addition of curbing creates a need to install a closed drainage system, and that can become very costly if there are no convenient outlets. This would be preferable, however, to allowing the roadway runoff to cross an uncurbed sidewalk.

Assessment of Probable Costs

4.1 Introduction

In order to evaluate the feasibility of the proposed multimodal connections on a segment by segment basis it is first necessary to estimate the likely costs associated with the proposed improvements. At this early stage the costs are very conceptual in nature, as is the design. They will, however, provide an overall order of magnitude guide as well as a way to compare individual alignment options.

4.2 Cost Estimating Methodology

The enclosed cost estimates are based on average unit construction item costs as well as average linear foot costs for similar bike and pedestrian facilities in Vermont and New Hampshire. Linear foot costs can be dramatically affected by the setting and the difficulty of construction. For example, the cost estimates use a linear foot cost of \$100 / foot for construction of a 10 foot wide paved shared use path. That cost includes an allowance for earthwork, drainage, traffic control, signs, railings, landscaping and other necessary items of work for a typical path. Sections of path through difficult urban or high traffic conditions will obviously cost more than paths through wide open rural conditions. The Jericho project falls somewhere in the middle since there are a variety of challenges within the corridor. It will not be until subsequent stages of design, permitting and right-of-way negotiations that the costs will be predicted with better certainty.

The enclosed costs do include assumed costs for engineering, permitting and project oversight. Right-of-way costs are <u>not</u> included since they are impossible to predict at this early stage.

4.3 Cost Estimating Results

The attached table represents a segment by segment breakdown of costs based on the calculated cost per linear foot for each typical section within the corridor. The shared use path costs are based on the paved path alternative since it best satisfies the project Purpose and Need. The granular path alternative would be only marginally less expensive than the paved path.

Browns Point Road Multimodal Improvements

Feasibility Study Cost Estimate

			Overall	10' Paved Path \$ 100. / LF		5'	5' Conc. Sidewalk \$ 90 / LF		3' Paved Shoulders \$ 70 / LF		10' Prefab. Bridge \$ 2000. / LF		6' Road Shift \$ 200 / LF		Wetland Mitigation \$ 100 / LF		Retaining Walls \$ 150 / LF		Contingencies 10%	Engineering & Admin. Costs	
Segment Option Description		Length (Ft)	Length	Cost	Le	ength	Cost	Length	Cost	Length	Cost	Length	Cost	Length	Cost	Length	Cost		20%	COSTS	
1		From MMU High School to Ethan Allen Road	1750	1750	\$ 175,0	00		\$ -		\$ -	90	\$ 180,000		\$ -	50	\$ 5,000		\$ -	\$ 36,000	\$ 72,000	\$ 468,000
2		From Ethan Allen Road to Pratt Road																			
	Α	Path on East Side of Road	1650	1650	\$ 165,0	00		\$ -		\$ -		\$ -	400	\$ 80,000	50	\$ 5,000		\$ -	\$ 25,000	\$ 50,000	\$ 325,000
	В	Path on West Side of Road	1650	1650	\$ 165,0	00		\$ -		\$ -		\$ -	400	\$ 80,000	50	\$ 5,000		\$ -	\$ 25,000	\$ 50,000	\$ 325,000
	С	Cross Country Pathj	2800	2800	\$ 280,0	00		\$ -		\$ -		\$ -	Especial Company	\$ -	80	\$ 8,000		\$ -	\$ 28,800	\$ 57,600	\$ 374,000
3		From Pratt Road tp Plains Road			NOP-TO-ARREADOR																
	Α	Path on East Side of Road	700	700	\$ 70,0	100		\$ -		\$ -		\$ -		\$ -	100	\$ 10,000		\$ -	\$ 8,000	\$ 16,000	\$ 104,000
450000000000000000000000000000000000000	В	Path on West Side of Road	700	600	\$ 60,0	000		\$ -		\$ -	Lawrence.	\$ -		\$ -	200	\$ 20,000	protections.	\$ -	\$ 8,000	\$ 16,000	\$ 104,000
4		Sidewalk & Shoulders from Plains Rd to Exist. Sidewalk			\$		900	\$ 81,000	900	\$ 63,000		\$ -		\$ -	200	\$ 20,000		\$ -	\$ 16,400	\$ 32,800	\$ 213,000

East Side Solution (Seg. 1, + Seg. 2.A + Seg. 3.A + Seg. 4) =

1,110,000.00

West Side Solution (Seg. 1 + Seg. 2.B. + Seg 3.B + Seg 4) =

1,110,000.00

West Side Cross Country (Seg. 1 + Seg. 2.C. + Seg 3.B + Seg 4) =

1,159,000.00

March 21, 2011

5

Summary

For a relatively short (1 mile) corridor the Browns Trace Road corridor faces significant challenges. There are natural and cultural resource constraints, utility poles, steep terrain, rivers and streams, and a high hazard intersection.

But with all of its challenges the study team observed that the envisioned bike and pedestrian improvements would provide tremendous benefits. The recommended continuous shared use path would provide non-motorized access between important segments of the community via the included side roads, and it would provide a key connection between the Town Center and the MMU High School. Providing first class non-motorized access to the school is significant because it helps our young citizens realize firsthand the health and social benefits of alternative transportation.

The total price tag for the envisioned improvements is significant; however it would be possible to approach the improvements in phases if funding for the entire project is not readily available. A logical approach would be to keep extending the improvements northward from the Town Center. For instance, there would be measurable benefit from extending the Segment 4 sidewalk to Plains Road as a first phase. Similarly, the Segment 3 path to Pratt Road would provide utility to the residents along that road. Finally, the shared use path would be built from Pratt Road to the School.

A standalone early phase could also be Segment 1 from the school to Ethan Allen Road. This phase would include the pedestrian bridge over the Lee River, which would provide a considerably safer river crossing for bikes and pedestrians when compared to the existing narrow roadway bridge.

Another early stage low cost improvement could be adding stable gravel shoulders in areas that currently lack shoulders of any type. This would provide an alternative running surface for the high school athletes that currently run within the paved Browns Trace Road travelways.

This feasibility study provides the tools for the Community to take additional steps toward selecting the appropriate levels of improvement and preferred alignments. Cost estimates, resource impacts and property needs will be identified in greater detail in subsequent project development phases.

Appendix

A - VTrans Cultural Resources Review Memorandum

Jeannine Russell VTrans Archaeologist State of Vermont Environmental Section One National Life Drive Montpelier, VT 05633-5001 www.aot.state.vt.us

Agency of Transportation

[phone] 802-828-3981 [fax] 802-828-2334 [ttd] 800-253-0191

To:

Seth Jensen, Jericho Town Planner

Date:

July 20, 2009

Subject:

Jericho Center MMU Multimodal Path

The Town of Jericho is proposing the construction of a multimodal path starting just north of the town green in Jericho Center and continuing north along Browns Trace Road to Mount Mansfield Union High School. The proposed path would be ten feet wide along one side of the road.

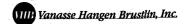
The VTrans Archaeologist and Historic Preservation Officer met with Seth Jensen, the Jericho Town Planner, on July 1, 2009 to look for potential resource issues and advise for the project feasibility study. Both sides of the road were observed during this visit.

The general area of the proposed project is considered sensitive for both pre-contact and historic archaeology. Pre-contact sensitivity is moderate due to the presence of several water courses, including the Lee River, in the general area as well as high terraces and well-drained soils. It is also sensitive for historic archaeology due to the presence of several known sites nearby. These sites are mostly historic house and barn sites, including VT-CH-716, VT-CH-717, and VT-CH-720.

Results of the field walkover indicated that the majority of the immediate project area has been disturbed by previous roadway construction and historic development, and is not considered to be sensitive. There are no buried utilities in the project area, and surrounding residences have private water and septic sources. There are a few areas outside of the existing roadway footprint that are considered sensitive, specifically the small field north of 304 Browns Trace Road at the intersection of Plains Road and the house yard north of Plains Road on the west side of Browns Trace Road. The open fields adjacent to Brown's Trace Road near the intersection with Lee River Road and Ethan Allen Road are also sensitive for pre-contact archaeological resources. A historic foundation was observed in the southeast quadrant of the bridge north of Ethan Allen Road. This foundation is thought to be the remains of a blacksmith shop that appears in the 1869 Beers Maps. These sensitive areas should be avoided if possible. If they cannot be avoided, further archaeological study will be necessary.

Thank you for the opportunity to comment on the above project. Please feel free to contact me if you have any questions or require further information.

Sincerely,


Jeannine Russell VTrans Archaeologist

Cc: Amy Bell, Planning Coordinator

Scott Newman, Historic Preservation Officer

Jeff Ramsey, Environmental Specialist

Appendix

Local Concerns Meeting & Public Informational Meeting B -

Transportation Land Development Environmental Services

Vanasse Hangen Brustlin, Inc.

Six Bedford Farms Drive, Suite 607 Bedford, New Hampshire 03110-6532 Telephone 603 644-0888 FAX 603 644-2385 www.vhb.com

Meeting **Notes**

Attendees: Seth Jensen, Jericho Town

Date/ Time: December 14, 2009

Planner

Brian Davis, CCMPO

Public attendees

Project No.: 57134.00

Place: MMU High School

Auditorium

Re: Jericho Multimodal Connections Study

Local Concerns Meeting

Notes taken by: Bryan Davis / G. Bakos

This meeting was held as a first step in learning the concerns of the public and identifying the project purpose and need. Greg Bakos utilized an electronic polling system to obtain instant feedback from the attendees on a number of topics and this stimulated additional discussion. The following comments were received:

The concept of building a roundabout at Lee River Road/ Browns Trace intersection was discussed. This would potentially provide traffic calming effects, safety improvements, and better bike/ ped access. The intersection was seen as a safety concern.

It was questioned why this particular project is being pursued rather than a different project such as the pedestrian bridge or a path along Route 15. A response was provided relative to how they are all important and not mutually exclusive. Priorities will be set at a local and regional level when they are ready for funding and construction.

It was noted that the only bike rack at the school is behind the main building. This shows how bikes need better support if there is to be a mode shift from cars to bikes among the students.

It was questioned whether we, as a community, want to emphasize multimodal transportation over automobile?

In relation to the concern with high perceived motor vehicle speeds on Browns Trace Road, one resident suggested removing some pavement to make road narrower which will slow traffic.

It was asked whether the project could be phased. The answer was yes, especially due to likely funding challenges.

There was a concern over how the project will be completed. The comment was to minimize the "hand-wringing" and don't over-design/ over-engineer it.

It was expressed that this project is about safety – it's a matter of life and death.

Transportation Land Development Environmental Services

Vanasse Hangen Brustlin, Inc.

Six Bedford Farms Drive. Suite 607 Bedford, New Hampshire 03110-6532 Telephone 603 644-0888 FAX 603 644-2385 www.vhb.com

Meeting **Notes**

Attendees: Seth Jensen, Jericho Town

Planner

Bryan Davis, CCMPO Jericho Selectboard Public attendees

Project No.: 57134.00

Date/ Time: April 7, 2011

Jericho Town Hall

Re: Jericho Multimodal Connections Study

Public Informational Meeting

Notes taken by: Brian Davis / G. Bakos

The Mount Mansfield High School to Jericho Center Multimodal Feasibility Study was presented to the public and the Selectboard by Greg Bakos of VHB. Preceding the presentation was a presentation by four University of Vermont engineering students on potential modifications to the Browns Trace Road / Lee River Road / Ethan Allen Road intersection. The following points of discussion were noted on the multimodal study presentation:

Segment 1 (MMU High School to Ethan Allen Road)

There is a new sports field just south of the field in the aerial photo used for the map of the proposed route. The trail route needs to account for that new field. It appears this will be possible, and in fact will provide added connectivity to the field.

Segment 2 (Ethan Allen Road to Pratt Road):

The fire chief noted that there used to be a trail at the end of Pratt Road that went through or around the gravel quarry. The thought would be that such a trail could circumvent the difficult area on Browns Trace Road where the historic homes and barn are close to the road. This alternative route would also avoid impacts to the fire company property on the west side of Browns Trace Road. Issues with the chief's route include potential wetlands and the need for a bridge to cross the river. Pratt Rd is narrow but has less traffic than Browns Trace. There was a concern that this route would add significant distance to the path - at least one mile down Pratt Road, and therefore might not be utilized. There were also concerns over security in the remote sections of such a trail. It was noted that there might be an approved development at the end of Pratt that could affect this potential trail option.

Phasing of Improvements:

A resident suggested that Segment 1 (MMU to Ethan Allen Rd) be the first segment considered for construction since the existing bridge is so unsafe for bikes and pedestrians. It was acknowledged that this brings students and others to the intersection with safety and other issues (Browns Trace Rd./ Lee River Rd./ Ethan Allen Rd.).

Appendix

Town Endorsement Letter C-

MEMORANDUM

FROM: JERICHO SELECTBOARD

SUBJECT: MMU TO JERICHO CENTER MULTIMODAL FEASIBILITY STUDY

DATE: 5/19/2011

On April 7, 2011, the Selectboard received and heard a presentation of the MMU to Jericho Center Multimodal Feasibility Study. The study investigated a range of alternatives, ranging from expanding gravel shoulders to a shared use path. The study includes cost estimates and several conceptual alignments for a paved, shared use path.

The Jericho Selectboard endorses a paved, shared use path from MMU High School to Jericho Center as the long term preferred alternative. Recognizing that this represents a major investment, the project is divided to at least four segments, as described in the Feasibility Study as follows

- Segment 1: Shared Use Path From MMU High School to Ethan Allen Road
- Segment 2: Shared Use Path From Ethan Allen Road to Pratt Road
- Segment 3: Shared Use Path From Pratt Road to Plains Road
- Segment 4: Sidewalk From Plains Road to the existing Jericho Center Sidewalks

Segments 3 and 4, which extend existing pedestrian infrastructure within Jericho Center, will receive highest priority. Following this, Segment 1, which is located entirely on property belonging to the CESU School District, will receive secondary priority. Given that Segment 3 is the most constrained, it will likely be the last segment undertaken. Given this incremental approach, other measures, such as expanded gravel shoulders along Browns Trace, will be considered to accommodate cyclists and pedestrians in the near term.